the lithium chloride solutions, showing a specific effect due to the hydrogen ion. Much further information on the properties of these solutions will be necessary before any quantitative analysis of these effects can be attempted.

In connection with the present data an attempt was made to test the applicability in the case of a weak electrolyte of Åkerlöf's equation<sup>13</sup> for the solubility of strong electrolytes. Åkerlöf<sup>14</sup> has derived equations to fit the data of Herz and Paul<sup>9</sup> on the solubility of mercuric chloride in solutions of lithium and calcium chlorides. Since the data of these latter authors exhibit internal inconsistencies of several per cent., the agreement of the equations with the data in these two cases cannot be considered as very significant. It has been found impossible to fit similar equations to the data of this paper. The Åkerlöf equation is of the form

### $\log P = f(m)$

where P is the thermodynamic solubility product and f(m) contains terms in log m and hence cannot be solved explicitly for m. Writing

$$\delta_{\rm i} = \log P - f(m_{\rm i})$$

it is possible to calculate and minimize  $\Sigma \delta_i^2$  and thus develop a least square procedure for treating

- (13) Åkerlöf and Thomas, THIS JOURNAL, 56, 593 (1934).
- (14) Åkerlöf, J. Phys. Chem., 41, 1053 (1937).

the data. The necessary equations have been derived and applied to the present data in the cases of hydrochloric acid and lithium chloride solutions. The equations so obtained do not reproduce the experimental data, and the constants of the equations are so widely discrepant that they lose all physical significance. That the least square procedure is adequate has been tested by applying it to the case of potassium ferricyanide in potassium chloride solutions.<sup>14</sup> An entirely satisfactory equation was thus obtained. The least square calculations were done using the smoothed data, hence the ill effects of one or two somewhat erroneous determinations have been largely avoided. It appears, then, that while the Åkerlöf equation gives excellent results with strong electrolytes it cannot be applied to the case of a weak electrolyte which forms complex ions in solution.

#### Summary

1. The solubility at  $25^{\circ}$  of mercuric chloride in water and in solutions of various chlorides has been determined.

2. In the concentration range corresponding to the solid phase  $HgCl_2$  the results suggest that the  $HgCl_2-Cl^-$  complex is similar in all cases studied.

NEW HAVEN, CONN. RECEIVED FEBRUARY 11, 1939

## The Critical Constants of Ethane

BY JAMES A. BEATTIE, GOUQ-JEN SU AND GERALD L. SIMARD

The critical constants of propane,<sup>1</sup> n-butane,<sup>2</sup> and n-heptane<sup>8</sup> have all been determined in the same apparatus by the compressibility method.<sup>4</sup> The compressibility of ethane from 25 to 250° and from 0.5 to 5.0 moles per liter has been studied<sup>5</sup>; and in the course of the extension of these measurements to a density of 10 moles per liter, we determined the compressibility of ethane for several isotherms in the critical region and located the critical point. Several determinations

- (4) J. A. Beattie, Proc. Am. Acad. Arts Sci., 69, 389 (1934).
- (5) J. A. Beattie, C. Hadlock and H. Poffenberger, J. Chem. Phys., 3, 93 (1935).

of the critical data for ethane are reported in the literature and they will be considered later.

The method of operation has been described elsewhere<sup>4</sup>; for ethane the all-steel bomb was used. The ethane was from the same stock used in the earlier measurements<sup>5</sup> and was supplied by the Buffalo Laboratory of The Linde Air Products Company through the courtesy of Dr. L. I. Dana. It was distilled several times to re-

#### Table I

The Effect of Varying the Vapor Volume on the Vapor Pressure of Ethane at 25.00° (Int.)

| Vapor volume, cc.<br>V. p., normal atm. | $40 \\ 41.377$ | $25 \\ 41.378$                               | $\begin{array}{c} 14 \\ 41.378 \end{array}$  | 6<br>41.379                                  |
|-----------------------------------------|----------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|
| Vapor volume, cc.<br>V. p., normal atm. | 3<br>41.379    | $\begin{array}{c} 0.7 \\ 41.378 \end{array}$ | $\begin{array}{c} 0.4 \\ 41.378 \end{array}$ | $\begin{array}{c} 0.2 \\ 41.378 \end{array}$ |

<sup>[</sup>Contribution from the Research Laboratory of Physical Chemistry, Massachusetts Institute of Technology, No. 414]

<sup>(1)</sup> J. A. Beattie, N. Poffenberger and C. Hadlock, J. Chem. Phys., 3, 96 (1935).

<sup>(2)</sup> J. A. Beattie, G. L. Simard and G.-J. Su, THIS JOURNAL, 61, 24 (1939).

<sup>(3)</sup> J. A. Beattie and W. C. Kay, *ibid.*, **59**, 1586 (1937).

## Table II

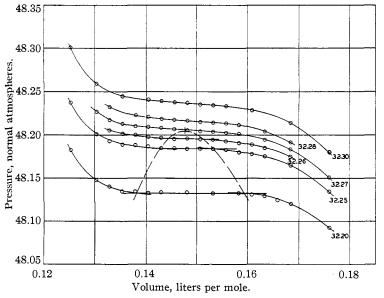
# Isotherms of Ethane $(C_2H_6)$ in the Critical Region

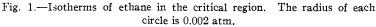
Molecular Weight, 30.0462

Critical point from Fig. 1:  $t_c = 32.27 \pm 0.01^\circ$  (Int.),  $p_c = 48.20 \pm 0.02$  normal atm.,  $v_c = 0.148$  liter per mol (4.93 cc. per gram),  $d_c = 6.76$  moles per liter (0.203 gram per cc.). The uncertainty in the critical volume and density is 1%. Temp., °C.

| Temp., °C.<br>(Int.)<br>Density<br>moles/liter | Volume<br>liters/mole | 32.200  | 32.250  | 32.260<br>Pressure, norma | 32.270<br>l atmospheres | 32,280  | 32.300  |
|------------------------------------------------|-----------------------|---------|---------|---------------------------|-------------------------|---------|---------|
| 5.682                                          | 0.1760                | 48.0930 | 48.1345 |                           | 48.1510                 |         | 48.1800 |
| 5.938                                          | ,1684                 | 48.1205 | 48.1650 | 48.1750                   | 48.1830                 | 48.1915 | 48.2140 |
| 6.028                                          | .1659                 | 48.1245 |         |                           |                         |         |         |
| 6.124                                          | , 1633                | 48.1295 | 48.1755 | 48.1845                   | 48.1950                 | 48.2040 |         |
| 6.219                                          | .1608                 | 48.1310 | 48.1775 | 48.1885                   |                         |         | 48.2285 |
| 6.321                                          | .1582                 | 48.1325 | 48.1805 | 48.1905                   | 48.2010                 | 48.2120 |         |
| 6.423                                          | .1557                 |         | 48.1830 | 48.1935                   | 48.2025                 | 48.2135 | 48.2340 |
| 6.527                                          | .1532                 | 48.1325 | 48.1835 | 48.1945                   | 48.2035                 | 48.2140 | 48.2345 |
| 6.640                                          | .1506                 |         | 48.1850 | 48.1950                   | 48.2045                 | 48.2155 | 48.2350 |
| 6.752                                          | . 1481                | 48.1335 | 48.1840 | 48.1955                   | 48.2055                 | 48.2165 | 48.2370 |
| 6.873                                          | .1455                 |         | 48.1850 | 48.1955                   | 48.2065                 | 48.2175 | 48.2375 |
| 6.993                                          | .1430                 | 48.1335 | 48.1850 | 48.1965                   | 48.2080                 | 48.2185 | 48.2390 |
| 7.117                                          | .1405                 | 48.1330 | 48.1865 | 48.1975                   | 48.2090                 | 48.2210 | 48.2405 |
| 7.252                                          | .1379                 | 48.1345 | 48.1880 | 48.1995                   | 48.2100                 | 48.2225 |         |
| 7.386                                          | , 1354                | 48.1345 | 48.1885 | 48.2015                   | 48.2125                 |         | 48.2445 |
| 7.530                                          | .1328                 | 48.1400 | 48.1930 | 48.2060                   | 48.2170                 | 48.2325 |         |
| 7.675                                          | .1303                 | 48.1475 | 48.2010 |                           | 48.2265                 |         | 48.2590 |
| 7.981                                          | .1253                 | 48.1825 | 48.2370 |                           |                         |         | 48.3010 |
|                                                |                       |         |         |                           |                         |         |         |

move permanent gases. The vapor pressures at  $25^{\circ}$  as a function of the vapor volume are given in Table I. The vapor pressure at  $25^{\circ}$ , 41.38 normal atm., is in good agreement with the value, 41.37 atm., previously found<sup>5</sup> for this sample.


## Results


In Table II are given the compressibility data in the critical region, and these values are plotted in Fig. 1. The pressures are given to 0.0005 atm. since relative values are consistent to about 0.001 atm. The critical data resulting from our measurements are given in Table II.

Germann and Pickering<sup>6</sup> select  $t_c = 32.1^\circ$ ,  $p_c = 48.8$  atm.,  $d_c = 0.21$  g. per cc., giving most weight to the measurements of Cardoso and

Bell<sup>7</sup> for  $t_c$  and  $p_c$ . Our data are in better agreement with the measurements of Prins,<sup>8</sup> who gives  $t_c = 32.32^\circ$ ,  $p_c = 48.13$ ,  $d_c$  not measured. Recently Sage, Webster, and Lacey<sup>9</sup> have found  $t_c =$ 

(6) "International Critical Tables," Vol. III, 1928, p. 248; see
S. F. Pickering, Sci. Papers Bur. Standards, No. 541 (1926).





 $32.5^{\circ}$ ,  $p_{\rm c} = 48.9$  atm.,  $d_{\rm c} = 0.212$  g. per cc. Summary

The critical constants of ethane (C<sub>2</sub>H<sub>6</sub>, mol. wt. 30.0462) are:  $t_c = 32.27 \pm 0.01$  °C. (Int.),  $p_c = 48.20 \pm 0.02$  normal atm.,  $v_c = 0.148$  liter per mole (4.93 cc. per gram),  $d_c = 6.76$  moles per liter (0.203 gram per cc.). The uncertainty in the critical volume and density is 1%.

CAMBRIDGE, MASS. RECEIVED FEBURARY 8, 1939

<sup>(7)</sup> E. Cardoso and R. Bell, J. Chim. Phys., 10, 497 (1912).

<sup>(8)</sup> Prins, Proc. Acad. Sci., Amsterdam, 17, II, 1095 (1915). Data reported in reference 6.

<sup>(9)</sup> B. H. Sage, D. C. Webster and W. N. Lacey, Ind. Eng. Chem., 29, 658 (1937).